

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC1679G$

5 V-BIAS, +15.5 dBm OUTPUT, 1.8 GHz WIDEBAND Si MMIC AMPLIFIER

DESCRIPTION

The μ PC1679G is a silicon monolithic integrated circuit designed as medium output power amplifier for high frequency system applications. Due to +13 dBm TYP. output at 1 GHz, this IC is recommendable for transmitter stage amplifier of L Band wireless communication systems. This IC is packaged in 8-pin plastic SOP.

This IC is manufactured using NEC's 20 GHz f⊤ NESAT[™]IV silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.

FEATURES

• Supply voltage : Vcc = 4.5 to 5.5 V

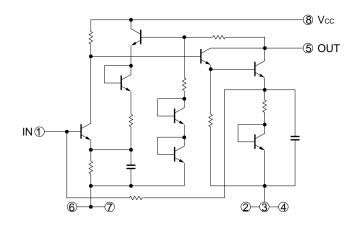
Saturated output power
 Po(sat) = +15.5 dBm TYP. @ f = 500 MHz with external inductor

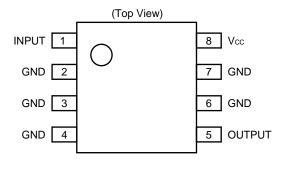
Wideband response : fu = 1.8 GHz TYP. @ 3 dB bandwidth
 Isolation : ISL = 34 dB TYP. @ f = 500 MHz
 Power Gain : GP = 21.5 dB TYP. @ f = 500 MHz

ORDERING INFORMATION

Part Number	Package	Marking	Supplying Form
μPC1679G-E1	8-pin plastic SOP (225 mil)	1679	Embossed tape 12 mm wide. 1 pin is tape pull-out direction. Qty 2.5 kp/reel.
μPC1679G-E2			Embossed tape 12 mm wide. 1 pin is tape roll-in direction. Qty 2.5 kp/reel.

Remark To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: μ PC1679G)


Caution Electro-static sensitive devices.


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

EQUIVALENT CIRCUIT

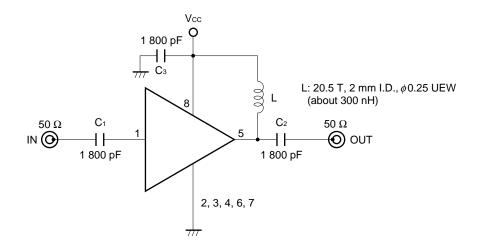
PIN CONNECTIONS

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol Conditions		Rating	Unit
Supply Voltage	Vcc	$T_A = +25 {}^{\circ}\text{C}$, pin 5, pin 8	6	V
Input Power	Pin	T _A = +25 °C	+10	dBm
Power Dissipation	Po	Mounted on double copper clad $50 \times 50 \times 1.6$ mm epoxy glass PWB (T _A = +85 °C)	360	mW
Operating Ambient Temperature	TA		-45 to +85	°C
Storage Temperature	T _{stg}		-55 to +150	°C

RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Notice
Supply Voltage	Vcc	4.5	5.0	5.5	V	The same voltage should be applied to pin 5 and 8
Operating Ambient Temperature	TA	-45	+25	+85	°C	


ELECTRICAL CHARACTERISTICS (TA = +25 °C, Vcc = Vout = 5.0 V, Zs = ZL = 50 Ω)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No signal	32	40	49	mA
Power Gain	G₽	f = 500 MHz	19.5	21.5	23.5	dB
Noise Figure	NF	f = 500 MHz	_	6.0	8.0	dB
Upper Limit Operating Frequency	fu	3 dB down below the gain at 0.1 GHz	1.5	1.8	-	GHz
Isolation	ISL	f = 500 MHz	29	34	-	dB
Input Return Loss	RLin	f = 500 MHz	9	12	-	dB
Output Return Loss	RLout	f = 500 MHz	1	3	-	dB
Saturated Output Power	Po(sat)	f = 500 MHz, Pin = +3 dBm	+13.5	+15.5	-	dBm

*

TEST CIRCUIT

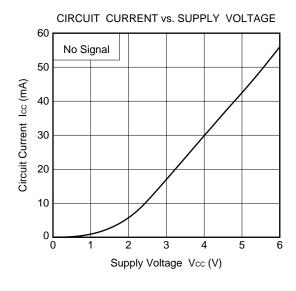
INDUCTOR FOR THE OUTPUT PIN

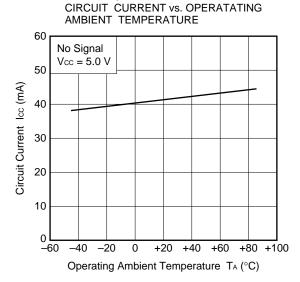
The internal output transistor of this IC consumes 30 mA, to output medium power. To supply current for output transistor, connect an inductor between the Vcc pin (pin 8) and output pin (pin 5). Select large value inductance, as listed above.

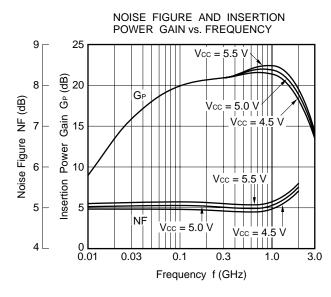
The inductor has both DC and AC effects. In terms of DC, the inductor biases the output transistor with minimum voltage drop to output enable high level. In terms of AC, the inductor make output-port impedance higher to get enough gain. In this case, large inductance and Q is suitable.

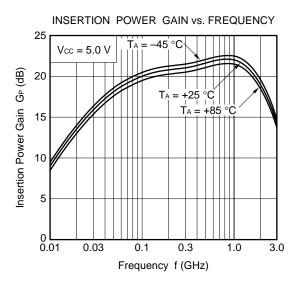
CAPACITORS FOR THE Vcc, INPUT AND OUTPUT PINS

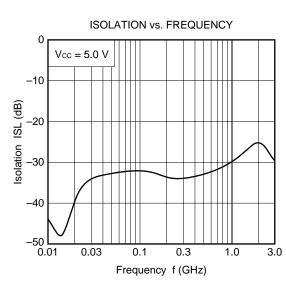
Capacitors of 1 800 pF are recommendable as the bypass capacitor for the Vcc pin and the coupling capacitors for the input and output pins.

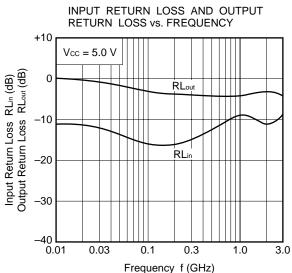

The bypass capacitor connected to the Vcc pin is used to minimize ground impedance of Vcc pin. So, stable bias can be supplied against Vcc fluctuation.

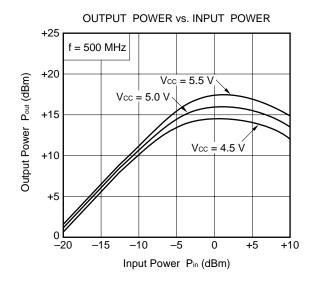

The coupling capacitors, connected to the input and output pins, are used to cut the DC and minimize RF serial impedance. Their capacitance are therefore selected as lower impedance against a 50 Ω load. The capacitors thus perform as high pass filters, suppressing low frequencies to DC.

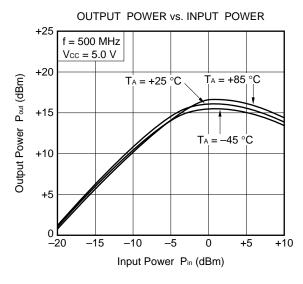

To obtain a flat gain from 100 MHz upwards, 1 800 pF capacitors are used in the test circuit. In the case of under 10 MHz operation, increase the value of coupling capacitor such as 10 000 pF. Because the coupling capacitors are determined by equation, $C = 1/(2 \pi Rfc)$.

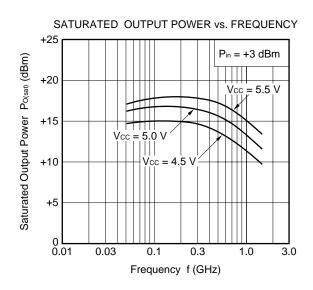

Data Sheet P12434EJ4V0DS00

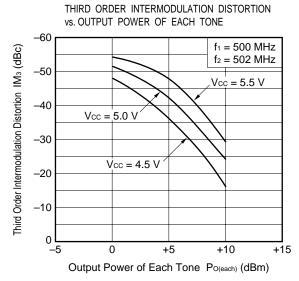

TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25 °C)

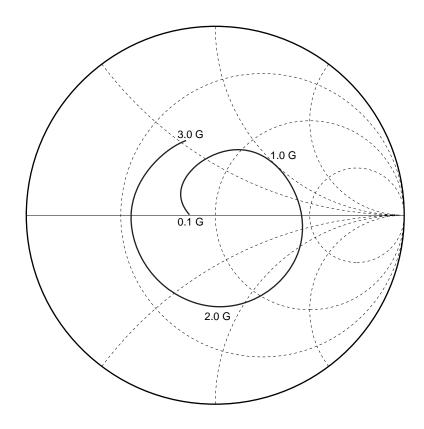


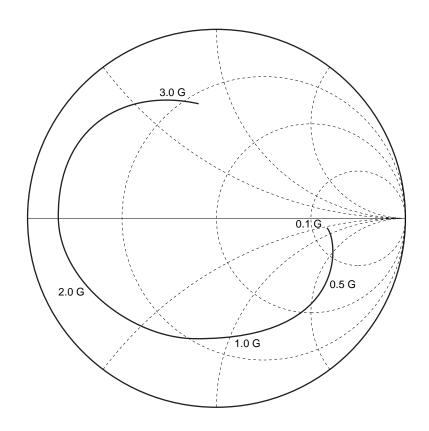












S-PARAMETER (TA = +25°C, Vcc = Vout = 5.0 V)

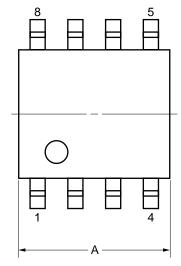
S₁₁-FREQUENCY

S₂₂-FREQUENCY

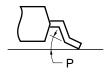
TYPICAL S-PARAMETER VALUES

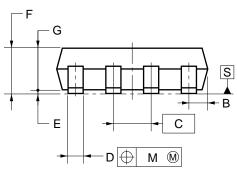
 μ PC1679G

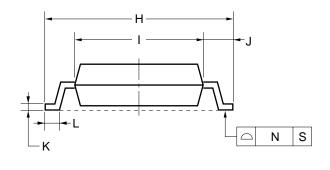
Vcc = Vout = 5.0 V, Icc = 40 mA


FREQUENCY		S ₁₁		S ₂₁	S	S 12	9	S22	K
MHz	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.	
100.0000	0.133	177.2	11.167	-4.7	0.024	-4.9	0.589	-3.9	1.40
200.0000	0.154	171.2	11.585	-9.8	0.022	-10.3	0.620	-9.7	1.41
300.0000	0.184	159.6	12.121	-16.1	0.018	-3.0	0.648	-17.3	1.51
400.0000	0.217	147.3	12.690	-23.9	0.015	4.9	0.669	-25.9	1.63
500.0000	0.247	132.4	13.210	-32.2	0.015	20.0	0.681	-35.1	1.42
600.0000	0.279	117.7	13.509	-40.9	0.017	35.5	0.680	-44.3	1.15
700.0000	0.307	102.8	13.902	-51.0	0.021	42.6	0.674	-53.6	0.88
800.0000	0.333	88.3	13.966	-59.8	0.026	44.8	0.659	-62.0	0.71
900.0000	0.342	76.4	13.895	-69.5	0.027	42.5	0.628	-70.6	0.72
1000.0000	0.412	60.4	14.401	-78.5	0.033	52.0	0.646	-75.4	0.48
1100.0000	0.419	46.1	14.244	-87.9	0.037	46.1	0.636	-83.6	0.46
1200.0000	0.434	31.7	14.249	-97.3	0.041	42.5	0.635	-90.1	0.43
1300.0000	0.450	18.1	14.096	-106.9	0.043	41.8	0.640	-97.8	0.41
1400.0000	0.461	3.2	13.945	-116.9	0.047	35.8	0.655	-105.0	0.39
1500.0000	0.481	-12.2	13.888	-125.9	0.051	34.1	0.664	-112.7	0.39
1600.0000	0.486	-27.2	13.645	-136.5	0.053	30.5	0.691	-120.6	0.39
1700.0000	0.487	-43.7	13.460	-147.3	0.053	27.3	0.707	-129.2	0.42
1800.0000	0.486	-61.2	13.043	-157.9	0.056	21.6	0.742	-138.5	0.44
1900.0000	0.479	-78.4	12.509	-170.0	0.058	17.7	0.771	-147.7	0.48
2000.0000	0.469	-95.6	11.678	179.0	0.057	13.6	0.794	-158.3	0.53
2100.0000	0.467	-113.5	10.720	168.4	0.057	9.9	0.819	-169.0	0.59
2200.0000	0.454	-130.9	9.763	158.2	0.056	3.5	0.840	179.9	0.63
2300.0000	0.450	-148.4	8.754	150.0	0.054	-1.4	0.846	168.7	0.71
2400.0000	0.449	-165.0	7.849	142.4	0.050	-6.4	0.852	157.1	0.78
2500.0000	0.443	179.3	7.022	135.4	0.045	-9.9	0.829	145.9	0.90
2600.0000	0.441	163.8	6.289	130.2	0.037	-13.3	0.790	133.6	1.11
2700.0000	0.430	149.9	5.800	126.1	0.029	-11.1	0.733	124.7	1.49
2800.0000	0.426	139.0	5.277	121.8	0.027	-1.1	0.697	117.2	1.75
2900.0000	0.429	128.2	5.108	116.7	0.027	6.1	0.672	110.0	1.84
3000.0000	0.432	118.6	4.894	114.0	0.025	15.9	0.635	103.2	2.02
3100.0000	0.419	110.7	4.541	107.4	0.028	31.2	0.598	98.0	2.05

Data Sheet P12434EJ4V0DS00


7


★ PACKAGE DIMENSIONS


8 PIN PLASTIC SOP (225 mil) (Unit: mm)

detail of lead end

NOTE

Each lead centerline is located within 0.12 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	5.2±0.2
В	0.85 MAX.
С	1.27 (T.P.)
D	$0.42^{+0.08}_{-0.07}$
E	0.1±0.1
F	1.57±0.2
G	1.49
Н	6.5±0.3
I	4.4±0.15
J	1.1±0.2
K	$0.17^{+0.08}_{-0.07}$
L	0.6±0.2
М	0.12
N	0.10
Р	3°+7°

NOTE ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference.
- (3) The bypass capacitor should be attached to Vcc line.
- (4) The inductor must be attached between Vcc and output pins. The inductance value should be determined in accordance with desired frequency.
- (5) The DC cut capacitor must be attached to input pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared Reflow	Package peak temperature: 235 °C or below Time: 30 seconds or less (at 210 °C) Count: 3, Exposure limit: None ^{Note}	IR35-00-3
VPS	Package peak temperature: 215 °C or below Time: 40 seconds or less (at 200 °C) Count: 3, Exposure limit: None ^{Note}	VP15-00-3
Wave Soldering	Soldering bath temperature: 260 °C or below Time: 10 seconds or less Count: 1, Exposure limit: None ^{Note}	WS60-00-1
Partial Heating	Pin temperature: 300 °C Time: 3 seconds or less (per side of device) Exposure limit: None ^{Note}	_

Note After opening the dry pack, keep it in a place below 25 °C and 65 % RH for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

Data Sheet P12434EJ4V0DS00

9

[MEMO]

[MEMO]

NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

M7 98.8